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1. Introduction

The understanding of gaps-between-jets processes has been subject to great progress over

the last few years. Of central importance in this context is the energy flow into the

interjet region as a very useful observable in the description of gaps-between-jets processes.

According to the method of Sterman et al. [1 – 4], the cross section for interjet energy flow

can be ‘refactorized’ into hard and soft parts at some factorization scale µ. For all but

the most trivial processes, these parts have a matrix structure in the space of colour flows

of the hard process, with the hard amplitude represented by a vector A in this space and

the sum of all possible soft corrections to the cross section represented by a matrix S.

The µ dependence of each is accounted for by an anomalous dimension Γ, also a matrix

in colour space. Logarithms of the ratio of the hard and soft scales can be summed to

all orders by taking µ of order the hard scale in the hard amplitude and the soft scale in

the soft matrix, using the exponential of the integral of Γ to connect the two scales. The

anomalous dimension matrix Γ has been calculated for all (QCD) 2 → 2 processes and

for various definitions of the final state [5 – 8]. A further leading logarithmic contribution

not accounted for by this resummation stems from the evolution of events with additional

real gluon radiation outside the gap region. These give rise to additional towers of leading

logarithms, known as secondary, or non-global, logarithms [9, 10]. We reserve a study of

their contribution to the five-parton evolution to a future work.

It is the purpose of this paper to calculate for the first time the anomalous dimension

matrix for a 2 → 3 process, namely qq → qqg; to distinguish it from the one for the

2 → 2 process qq → qq, we denote it Λ. This can serve as a starting point to improve the

understanding of theoretical aspects in the description of gaps-between-jets processes. The

calculation of this matrix is also a first step towards energy flow analyses of 3-jet processes

which are particularly interesting at the LHC.
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In this paper we consider the process qq → qqg with a gap defined by a central rapidity

region of length Y < ∆y where ∆y is the rapidity separation of the outgoing quarks. The

real gluon is restricted to the region outside the gap. Λ is then obtained by calculating the

virtual corrections to this process from a softer gluon connecting the external lines in all

possible ways. In common with other calculations of gaps-between-jets cross sections [5 –

8], we assume a perfect real-virtual cancellation outside the gap region. Thus the virtual

gluon is integrated only over the rapidity interval of the gap and over all azimuthal angles.

We represent the result for Λ in three colour bases and thereby shed light on different

aspects of it.

2. The anomalous dimension matrix for qq → qqg

Let us start with the colour structure. For the qiqj → qkqlga system (where the subscripts

are the colour indices) there are four independent colour states needed. We first choose

the t-channel basis

C1 = T a
kiδlj + δkiT

a
lj, (2.1)

C2 = T b
kiT

c
lj dabc, (2.2)

C3 = T a
kiδlj − δkiT

a
lj, (2.3)

C4 = T b
kiT

c
lj ifabc. (2.4)

The lowest order soft matrix (which contains the traces of the squared operators of the

basis) is given in this basis by

S =











Nc(N
2
c − 1) 0 0 0

0 1
4Nc

(N2
c − 1)(N2

c − 4) 0 0

0 0 Nc(N
2
c − 1) 0

0 0 0 1
4Nc(N

2
c − 1)











. (2.5)

The momenta of the hard process are labeled in the following way

q(p1) + q(p2) → q(p3) + q(p4) + g(k). (2.6)

We work in the frame in which 1 and 2 collide head on and the gap region is central in

rapidity,

p1 = E1(1; 0, 0, 1), (2.7)

p2 = E2(1; 0, 0,−1), (2.8)

p3 = q⊥3 (cosh y3; 0, 1, sinh y3) , (2.9)

p4 = q⊥4 (cosh y4; sin ϕ, cos ϕ, sinh y4) , (2.10)

k = k⊥ (cosh y ; sin φ, cos φ, sinh y ) . (2.11)

Note that in the limit in which the emitted gluon is much softer than the quarks, k⊥ ¿

q⊥3,4, momentum conservation implies q⊥3 = q⊥4 and ϕ = π and the kinematics are
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identical to the lowest order process qq → qq. We are interested in the case that the quark

jets are either side of the gap and can therefore assume y3 > 0 and y4 < 0.

We denote the rapidity, azimuthal angle and transverse momentum of the virtual gluon

k′ by y′, φ′ and k′
⊥, respectively. For future use, we define

sy = sgn(y). (2.12)

The gap is defined by a central rapidity region of length Y . Since we are interested in the

case of k outside the gap and k′ within it, we have

|y′| <
Y

2
< |y| (2.13)

and hence

sgn(y − y′) = sgn(y) = sy. (2.14)

We denote the hard amplitude (2.6) evaluated at refactorization scale µ by the (four di-

mensional) vector A(µ). The anomalous dimension matrix Λ is then defined through the

evolution of A(µ),

µ
d

dµ
A =

2αs

π
Λ A. (2.15)

We can extract Λ from a one-loop calculation by expanding (2.15) to leading order,

A(1) = −
2αs

π

∫

dk′
⊥

k′
⊥

Λ A(0), (2.16)

where A(0) and A(1) are respectively the lowest order and one-loop amplitudes. The latter

is calculated from the virtual corrections to the hard process from a gluon coupling two

external lines in all possible ways. We work in the eikonal effective theory. The region of

integration is

0 < φ′ < 2π (2.17)

−Y/2 < y′ < Y/2. (2.18)

Details of the calculation of Λ can be found in the appendix. We only state the result here

written as a sum of four parts.

Λ =







Nc
4

(Y − iπ) + 1

2Nc
iπ ( 1

4
−

1

N2
c

)iπ −

Nc
4

syY 0

iπ
Nc
4

(2Y − iπ) −

3

2Nc
iπ 0 0

−

Nc
4

syY 0
Nc
4

(Y − iπ) −

1

2Nc
iπ −

1

4
iπ

0 0 −iπ
Nc
4

(2Y − iπ) −

1

2Nc
iπ







+











Nc 0 0 0

0 Nc 0 0

0 0 Nc 0

0 0 0 Nc











1

4
ρ(2|y|) +











CF 0 0 0

0 CF 0 0

0 0 CF 0

0 0 0 CF











(

1

4
ρ(2|y3|) +

1

4
ρ(2|y4|)

)

+











Nc

4 (−1
2λ) 0 Nc

4 (−1
2syλ) 1

4(1
2syλ)

0 Nc

4 (−1
2λ) 0 Nc

4 (1
2syλ)

Nc

4 (−1
2syλ) 0 Nc

4 (−1
2λ) 1

4(−1
2λ)

1
2syλ (Nc

4 − 1
Nc

)(1
2syλ) −1

2λ Nc

4 (−1
2λ)











, (2.19)
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where we have defined

ρ(y) ≡ log
sinh(y/2 + Y/2)

sinh(y/2 − Y/2)
− Y, (2.20)

λ ≡
1

2
log

cosh(|ȳ| + |y| + Y ) − cos(φ̄)

cosh(|ȳ| + |y| − Y ) − cos(φ̄)
− Y (2.21)

with

φ̄ ≡

{

φ y > 0,

ϕ − φ y < 0,
(2.22)

and

ȳ ≡

{

y3 y > 0,

y4 y < 0.
(2.23)

We have grouped the four terms of Λ in the following way. For fixed Y , the first line

contains all the terms that remain when y, y3, y4 → ±∞ (the high energy limit), the second

line contains the additional terms that remain when y is finite, the third line contains the

additional terms that remain when y3 or y4 is finite and the last line contains the additional

terms that remain when y3, y4 and y are finite. For future reference we define these four

lines to be Λ1,2,3,4 respectively.

For reasons that will become apparent shortly, it will be useful to modify the matrix Λ.

Adding a multiple of the identity matrix to any matrix does not change its eigenvectors and

simply adds a constant to all of its eigenvalues. Moreover, adding an imaginary constant

to all the eigenvalues of Λ will not change the physics, since the energy dependence comes

from combinations λ(i)∗ + λ(j). Therefore we are free to add any imaginary constant times

the identity matrix to Λ. From now on we shall denote Λ the matrix obtained from (2.19)

by

Λ → Λ + Nc/4 iπ. (2.24)

The eigenvalues of this matrix Λ are:

λ(1) =
Nc

2
Y +

Nc − 1

2Nc

iπ + Nc
1
4ρ(2|y|) + CF

(

1
4ρ(2|y3|) + 1

4ρ(2|y4|)
)

+ 1
4λ, (2.25)

λ(2) =
Nc

2
Y −

Nc + 1

2Nc

iπ + Nc
1
4ρ(2|y|) + CF

(

1
4ρ(2|y3|) + 1

4ρ(2|y4|)
)

− 1
4λ, (2.26)

λ(3) =
N2

c Y − 2iπ − Nc

√

N2
c Y 2 − 4Y iπ − 4π2

4Nc

+ Nc
1
4ρ(2|y|) + CF

(

1
4ρ(2|y3|) + 1

4ρ(2|y4|)
)

− Nc

4 λ, (2.27)

λ(4) =
N2

c Y − 2iπ + Nc

√

N2
c Y 2 − 4Y iπ − 4π2

4Nc

+ Nc
1
4ρ(2|y|) + CF

(

1
4ρ(2|y3|) + 1

4ρ(2|y4|)
)

− Nc

4 λ (2.28)

and it is diagonalized by

R =











1
2sy −1

2sy (− 3
2Nc

− iNcY
2π

+ iλ(3)

π
)sy (− 1

2Nc
− iλ(3)

π
)sy

Nc

Nc+2sy
Nc

Nc−2sy −sy −sy

−1
2

1
2 − 1

2Nc
− iNcY

2π
+ iλ(3)

π
1

2Nc
− iλ(3)

π

1 1 1 1











. (2.29)
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Note that whereas Λ1 has four different eigenvalues, two eigenvalues of Λ4 are degenerate.

2.1 Block diagonalization of Λ

The anomalous dimension matrix Γ for the hard process qq → qq is defined in exact analogy

to Λ, (2.16). In the high energy limit (|y3,4| → ∞) and in the t-channel singlet-octet basis

it reads:

Γ =

(

0
(

1
4 − 1

4N2
c

)

iπ

iπ Nc

2 Y − 1
Nc

(iπ)

)

. (2.30)

Two of the eigenvalues of Λ1 coincide with the eigenvalues of Γ (to enable this was the

reason for the modification (2.24) of Λ). We can therefore construct a matrix

R̂ =

√

Nc

2(N2
c − 1)











1
2sy −1

2sy sy
1

2Nc
sy

Nc

Nc+2sy
Nc

Nc−2sy 0 sy

−1
2

1
2 1 − 1

2Nc

1 1 0 −1











. (2.31)

which diagonalizes Λ4 and transforms Λ1 in the following way:

R̂−1Λ1R̂ =













λ
(1)
1 0 0 0

0 λ
(2)
1 0 0

0 0 0
(

1
4 − 1

4N2
c

)

iπ

0 0 iπ Nc

2 Y − 1
Nc

(iπ)













. (2.32)

where λ
(i)
1 are the eigenvalues of Λ1, which can be obtained from (2.25), (2.28) by setting

ρ and λ to 0. Not only is this matrix block diagonal but, remarkably, the upper left block

is itself diagonal, and the lower right block is identical to Γ.

Note that the soft matrix in this basis,

R̂†SR̂ =











N2
c

2
Nc+1
Nc+2 0 0 0

0 N2
c

2
Nc−1
Nc−2 0 0

0 0 N2
c 0

0 0 0 1
4(N2

c − 1)











, (2.33)

is still diagonal and that its lower right block is identical to the soft matrix of the 2 → 2

process (the latter property is the reason for our choice of normalization for R̂). It is also

interesting to note that in this basis the anomalous dimension matrix Λ is sy independent

and that all of the sy dependence is carried by the definitions of the basis states, which are

different for sy = ±1.

2.2 The s-channel basis

Reference [11] advocated using the set of s-channel projectors as the colour basis for 2 → 2

processes. In this section we present our results for Λ in an alternative block-diagonal form

in which its lower right block is identical to Γ transformed into the s-channel basis and

show that its basis states have a simple form.
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For a qq state, the projectors are

P3̄ =
1

2

(

δkiδlj − δliδkj

)

, (2.34)

P6 =
1

2

(

δkiδlj + δliδkj

)

. (2.35)

We can transform between the t-channel basis we have been using so far and the s-channel

basis using the matrix

Rst =

(

Nc−1
2Nc

Nc+1
2Nc

−1 +1

)

. (2.36)

That is, Γ transforms to

R−1
st Γ Rst =

(

1
4(Nc + 1)Y − Nc+1

2Nc
iπ −1

4(Nc + 1)Y

−1
4(Nc − 1)Y 1

4 (Nc − 1)Y + Nc−1
2Nc

iπ

)

(2.37)

in the high energy limit and S to

R†
st S Rst =

(

1
2Nc(Nc − 1) 0

0 1
2Nc(Nc + 1)

)

. (2.38)

Note that the imaginary terms appear only in the diagonal of Γ and that the entries in

S correspond to the multiplicities of the basis states, 3 and 6 for Nc = 3, two of the

advantages of the s-channel projector basis.

We wish to express Λ in a block diagonal form in which the bottom right block is equal

to Γ in the s-channel basis, eq. (2.37). To this end we define a matrix

R̂st =













√

Nc+2
Nc

0 0 0

0
√

Nc−2
Nc

0 0

0 0 Nc−1
2Nc

Nc+1
2Nc

0 0 −1 +1













, (2.39)

in which the bottom right block is equal to Rst and the diagonal entries in the top left

block are arbitrary – the particular choice made here will lead to a convenient result for

the soft matrix.

Transforming Λ1 and S from the original t-channel basis, we obtain

R̂−1
st R̂−1 Λ1 R̂ R̂st =











λ
(1)
1 0 0 0

0 λ
(2)
1 0 0

0 0 1
4(Nc + 1)Y − Nc+1

2Nc
iπ −1

4(Nc + 1)Y

0 0 −1
4(Nc − 1)Y 1

4(Nc − 1)Y + Nc−1
2Nc

iπ











(2.40)

and

R̂†
st R̂† S R̂ R̂st =











1
2Nc(Nc + 1) 0 0 0

0 1
2Nc(Nc − 1) 0 0

0 0 1
2Nc(Nc − 1) 0

0 0 0 1
2Nc(Nc + 1)











. (2.41)

– 6 –



J
H
E
P
0
1
(
2
0
0
6
)
0
8
5

By construction, the lower right block of Λ is equal to Γ in the high energy limit, the lower

right block of S is equal to S in the 2 → 2 s-channel basis and the upper left entries of Λ

are left unchanged. The upper left entries of S are set by our arbitrary choices in R̂st for

reasons that will be seen shortly. Beyond the high energy limit, the bottom right block of

Λ contains a term 1
4CF (ρ(2|y3|) + ρ(2|y4|)) + 1

4Nc(ρ(2|y|) − λ) times the identity matrix

while Γ contains just a term 1
4CF (ρ(2|y3|) + ρ(2|y4|)) times the identity matrix, resulting

in a small mismatch.

The actual definitions of the basis states can be read off from the columns of R̂ R̂st

and can be written in forms proportional to the s-channel projectors for the incoming

quarks. Since the matrix R̂ depends on sy, these states are different for sy = ±1 (recall

that sy = +1 implies that the gluon is on the same side of the rapidity gap as incoming

quark i and outgoing quark k, while sy = −1 implies that it is on the other side). For

sy = +1 we have

Ĉ1 ∝
1

2

(

δmiδnj + δniδmj

)(

δkmT a
ln −

1

Nc + 1
T a

kmδln

)

, (2.42)

Ĉ2 ∝
1

2

(

δmiδnj − δniδmj

)(

δkmT a
ln +

1

Nc − 1
T a

kmδln

)

, (2.43)

Ĉ3 ∝
1

2

(

δmiδnj − δniδmj

)(

T a
kmδln

)

, (2.44)

Ĉ4 ∝
1

2

(

δmiδnj + δniδmj

)(

T a
kmδln

)

, (2.45)

while for sy = −1 we have

Ĉ1 ∝
1

2

(

δmiδnj + δniδmj

)(

T a
kmδln −

1

Nc + 1
δkmT a

ln

)

, (2.46)

Ĉ2 ∝
1

2

(

δmiδnj − δniδmj

)(

T a
kmδln +

1

Nc − 1
δkmT a

ln

)

, (2.47)

Ĉ3 ∝
1

2

(

δmiδnj − δniδmj

)(

δkmT a
ln

)

, (2.48)

Ĉ4 ∝
1

2

(

δmiδnj + δniδmj

)(

δkmT a
ln

)

. (2.49)

It is important to note that although we have made arbitrary choices that affect the

normalizations of these states in order to get S into the form eq. (2.41), their forms are

otherwise determined entirely by the physics of Λ. We see that the two states that evolve

like a qq → qq system have a colour structure given by the qq → qq projectors followed

by a gluon emission from the outgoing quark it is on the same side of the gap as. The

two other states are given similarly by projectors followed by an emission from the other

outgoing quark, up to colour-suppressed terms coming from emission on the same side.

3. Conclusions

We have calculated the anomalous dimension matrix Λ for the five-parton process qq → qqg

and presented it in several different colour bases. It seems likely that the generalization

of the s-channel basis, eq. (2.40), will be most useful both for gaining insight into the

– 7 –
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physics of Λ and for performing practical calculations. We anticipate using Λ to improve

the theoretical understanding of gaps-between-jets processes and ultimately to calculate

energy flow observables in 3-jet processes, which are particularly interesting at the LHC.

The latter however requires the anomalous dimension matrices for all 3-jet processes to be

calculated, a highly non-trivial problem: in the most complicated case of gg → ggg one

expects up to 44 independent colour amplitudes and a deeper theoretical insight seems

necessary to organize the calculation. In particular it would be extremely interesting to see

whether the block diagonal structure we found for qq → qqg can be generalized to arbitrary

processes, with one block always equal to the anomalous dimension matrix of a lower-order

process.

A. Calculation of Λ

In the basis (2.1), (2.4) Λ has the following colour structure

Λ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
2Nc

(Ω12+Ω34+

Ω14+Ω23) ( 1
4
−

1
N2

c
)(Ω12+Ω34+Ω14+Ω23) 0 1

4
(−Ω14+Ω23)

Ω12+Ω34

+Ω14+Ω23 −

3
2Nc

(Ω12+Ω34+Ω14+Ω23) 0 Nc

4
(−Ω14+Ω23)

+Nc

4
(Ω14+Ω23)

0 0 −

1
2Nc

(Ω12+Ω34+Ω14+Ω23)
1
4
(−Ω12+Ω34)

−Ω14+Ω23 (Nc

4
−

1
Nc

)(−Ω14+Ω23) −Ω12+Ω34 −

1
2Nc

(Ω12+Ω34

+Ω14+Ω23)

+Nc

4
(Ω14+Ω23)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Nc

4
(Ω1k−Ω2k

−Ω3k+Ω4k) 0 Nc

4
(Ω1k+Ω2k−Ω3k−Ω4k) 1

4
(Ω1k+Ω2k

+Ω3k+Ω4k)

0 Nc

4
(Ω1k−Ω2k−Ω3k+Ω4k) 0 Nc

4
(Ω1k+Ω2k

+Ω3k+Ω4k)
Nc

4
(Ω1k+Ω2k

−Ω3k−Ω4k) 0 Nc

4
(Ω1k−Ω2k−Ω3k+Ω4k) 1

4
(−Ω1k+Ω2k

−Ω3k+Ω4k)

Ω1k+Ω2k

+Ω3k+Ω4k (Nc

4
−

1
Nc

)(Ω1k+Ω2k+Ω3k+Ω4k) −Ω1k+Ω2k−Ω3k+Ω4k
Nc

4
(Ω1k−Ω2k

−Ω3k+Ω4k)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+

0

B

B

B

@

(Nc

4
−

1
2Nc

)(Ω13+Ω24) 0 Nc

4
(−Ω13+Ω24) 0

0 −

1
2Nc

(Ω13+Ω24) 0 0
Nc

4
(−Ω13+Ω24) 0 (Nc

4
−

1
2Nc

)(Ω13+Ω24) 0

0 0 0 −

1
2Nc

(Ω13+Ω24)

1

C

C

C

A

. (A.1)

Ωij corresponds to the case in which the virtual gluon couples quarks i and j. Ωik accounts

for the coupling of quark i and the gluon k. These functions are given by

Ωij =
1

2
δiδj

[
∫

Ω
dy′

dφ′

2π
ωij −

1
2(1 − δiδj)iπ

]

(A.2)

and

Ωik =
1

2
δiδkδg

[
∫

Ω
dy′

dφ′

2π
ω′

ik −
1
2(1 − δiδk)iπ

]

(A.3)
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where we have introduced the shorthands

ωij =
1
2k′2

⊥ pi ·pj

pi ·k′ k′ ·pj

, ω′
ik =

1
2k′2

⊥ pi ·k

pi ·k′ k′ ·k
. (A.4)

We have δiδj = −1 if i and j are both incoming or both outgoing and +1 otherwise.

δg depends on the topology of the triple-gluon vertex: in our convention in which the

indices of ifabc are labeled in an anticlockwise direction around the vertex, if, with the

vertex rotated so that the momentum of the eikonal gluon is flowing horizontally from left

to right, the soft gluon is above it, then δg = +1, and if below, δg = −1.

It is worth pointing out that in the general case, the elements of Λ, eq. (A.1) obey the

following equality:

Λij/Sjj = Λji/Sii (no sum), (A.5)

implying that in an orthonormal basis in which S is equal to the identity matrix, Λ is a

symmetric matrix. This property is therefore valid independently of the observable to which

Λ contributes. It was pointed out in ref. [12] that this property is true of all anomalous

dimension matrices that have been calculated to date, although no explanation of this fact

was offered.

Carrying out the integrations in (A.3), (A.4) over the region Ω:

0 < φ′ < 2π (A.6)

−Y/2 < y′ < Y/2, (A.7)

we obtain

Ω12 = −
1

2
(Y − iπ), (A.8)

Ω34 = −
1

2
(Y − iπ) −

1

4
ρ(2|y3|) −

1

4
ρ(2|y4|), (A.9)

Ω14 =
1

2
Y +

1

4
ρ(2|y4|), (A.10)

Ω23 =
1

2
Y +

1

4
ρ(2|y3|), (A.11)

Ω13 =
1

4
ρ(2|y3|), (A.12)

Ω24 =
1

4
ρ(2|y4|), (A.13)

Ω1k =
1

4
(1 − sy)Y +

1

4
ρ(2|y|), (A.14)

Ω2k = −
1

4
(1 + sy)Y −

1

4
ρ(2|y|), (A.15)

Ω3k = −
1

2

[

1

2
(1 − sy)Y +

1

2
ρ(2|y3|) +

1

2
ρ(2|y|) −

1

2
(1 + sy)λ(|y3| + |y|, φ) − iπ

]

, (A.16)

Ω4k =
1

2

[

1

2
(1 + sy)Y +

1

2
ρ(2|y4|) +

1

2
ρ(2|y|) −

1

2
(1 − sy)λ(|y4| + |y|, ϕ − φ) − iπ

]

(A.17)

where we have defined

sy = sgn(y), (A.18)
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ρ(y) ≡ log
sinh(y/2 + Y/2)

sinh(y/2 − Y/2)
− Y, (A.19)

λ(y, φ) ≡
1

2
log

cosh(y + Y ) − cos(φ)

cosh(y − Y ) − cos(φ)
− Y. (A.20)

It is useful to note that

λ(y, 0) = ρ(y). (A.21)

Acknowledgments

We are extremely grateful to Jeff Forshaw for interesting discussions of this and related

topics. AK is supported by PPARC grant PP/D000157/1.

References

[1] J.C. Collins, D.E. Soper and G. Sterman, Soft gluons and factorization, Nucl. Phys. B 308

(1988) 833.

[2] M.G. Sotiropoulos and G. Sterman, Color exchange in near forward hard elastic scattering,

Nucl. Phys. B 419 (1994) 59 [hep-ph/9310279].

[3] H. Contopanagos, E. Laenen and G. Sterman, Sudakov factorization and resummation, Nucl.

Phys. B 484 (1997) 303 [hep-ph/9604313].

[4] N. Kidonakis, G. Oderda and G. Sterman, Threshold resummation for dijet cross sections,

Nucl. Phys. B 525 (1998) 299 [hep-ph/9801268].

[5] G. Oderda and G. Sterman, Energy and color flow in dijet rapidity gaps, Phys. Rev. Lett. 81

(1998) 3591 [hep-ph/9806530].

[6] G. Oderda, Dijet rapidity gaps in photoproduction from perturbative QCD, Phys. Rev. D 61

(2000) 014004 [hep-ph/9903240].

[7] C.F. Berger, T. Kucs and G. Sterman, Energy flow in interjet radiation, Phys. Rev. D 65

(2002) 094031 [hep-ph/0110004].

[8] R.B. Appleby and M.H. Seymour, The resummation of inter-jet energy flow for gaps-between-

jets processes at HERA, JHEP 09 (2003) 056 [hep-ph/0308086].

[9] M. Dasgupta and G.P. Salam, Resummation of non-global QCD observables, Phys. Lett. B

512 (2001) 323 [hep-ph/0104277].

[10] M. Dasgupta and G.P. Salam, Accounting for coherence in interjet e(t) flow: a case study,

JHEP 03 (2002) 017 [hep-ph/0203009].

[11] Y.L. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form factor, Phys. Lett. B

631 (2005) 118 [hep-ph/0508130].

[12] M.H. Seymour, Symmetry of anomalous dimension matrices for colour evolution of hard

scattering processes, JHEP 10 (2005) 029 [hep-ph/0508305].

– 10 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB308%2C833
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB308%2C833
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB419%2C59
http://xxx.lanl.gov/abs/hep-ph/9310279
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C303
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C303
http://xxx.lanl.gov/abs/hep-ph/9604313
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB525%2C299
http://xxx.lanl.gov/abs/hep-ph/9801268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C3591
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C3591
http://xxx.lanl.gov/abs/hep-ph/9806530
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C014004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C014004
http://xxx.lanl.gov/abs/hep-ph/9903240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C094031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C094031
http://xxx.lanl.gov/abs/hep-ph/0110004
http://jhep.sissa.it/stdsearch?paper=09%282003%29056
http://xxx.lanl.gov/abs/hep-ph/0308086
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB512%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB512%2C323
http://xxx.lanl.gov/abs/hep-ph/0104277
http://jhep.sissa.it/stdsearch?paper=03%282002%29017
http://xxx.lanl.gov/abs/hep-ph/0203009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB631%2C118
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB631%2C118
http://xxx.lanl.gov/abs/hep-ph/0508130
http://jhep.sissa.it/stdsearch?paper=10%282005%29029
http://xxx.lanl.gov/abs/hep-ph/0508305

